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Abstract

The dynamics of 23Na during completely balanced steady-state free precession (SSFP) have been studied in numerical simulations and
experiments. Results from both agree well. It is shown that during SSFP multiple quantum coherences are excited and that their exci-
tation affects the observable signal. The signal response to the sequence parameters (flip angle, TR, and RF pulse phase cycle) shows a
structure which can not be described by the Bloch equations. Due to excitation of T̂ 31ðs; aÞ, the amplitude ratio of the fast and slowly
decaying components deviates from 3:2 and is a function of the sequence parameters. The results shown here represent a basis for the
implementation and optimization of 23Na-SSFP imaging sequences.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Steady-state free-precession (SSFP) methods [1] have
found widespread application in 1H magnetic resonance
imaging due to their high signal-to-noise ratio (SNR) and
interesting contrast properties [2]. Since the first report of
SSFP imaging in 1986 [3], improvements in scanner hard-
ware, in particular, gradient stability, better shim algorithms
and better RF phase stability, have resolved most of the ini-
tial shortcomings. An important question to be considered is
whether the advantages of SSFP methods can be used for
imaging and spectroscopy with X-nuclei as well. The use of
SSFP chemical shift imaging with 31P has been demonstrated
[4]. Another X-nucleus to be considered is 23Na.

23Na plays an important role in applications of biology,
chemistry, and medicine. For instance, sodium has been pro-
posed as a means to measure tissue viability and to detect
myocardial infarction [5–8]. In this context, a TrueFISP
sequence has been previously used to obtain 23Na MR
images of the heart [5]. Other important applications are
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the characterization of cartilage [9], imaging of the kidney
[10], and brain [11], and the study of polymers in the liquid
state [12].

The mathematical framework for the description of the
magnetization vector with spin-1/2 nuclei is the Bloch
equations. Based on these, the dynamics of 1H, 31P, and
other spin-1/2 nuclei during SSFP are well understood
[1,2,13]. However, an analogous understanding is missing
for 23Na (and spin-3/2 nuclei in general). 23Na is a nucleus
with a quadrupolar moment which dominates its relaxation
characteristics. Quadrupolar relaxation causes the excita-
tion of multiple quantum coherences and biexponential
decay; these are effects which can not be described by the
Bloch equations. It is therefore obvious that with 23Na,
the SSFP dynamics are fundamentally different than with
spin-1/2 nuclei. The question addressed in this paper is,
however, whether the differences in the underlying dynam-
ics also lead to distinct differences in the observable signal.
Since this is closely related to the excitation of coherences
of rank l > 1, the question addressed is to what extent these
coherences are excited and how this depends on the
sequence parameters (TR, flip angle, and RF pulse phase
cycle). To the best of our knowledge, this issue has not been
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treated before. The dynamics of spin-3/2 nuclei under peri-
odic RF irradiation and free precession have been
described before only in the context of multiple-pulse
quadrupolar echoes [14]. Other previous work has consid-
ered the clinical feasibility of SSFP methods but has
employed a spin-1/2 model [15].

The purpose of the present study was therefore to inves-
tigate the effects that occur with 23Na during SSFP. To
minimize the number of degrees of freedom, we have not
investigated the influence of imaging gradients on the spa-
tial shape of the steady-state trajectories, but have restrict-
ed ourselves to the case of completely balanced SSFP. For
reasons stated below, the investigation was done in numer-
ical simulations. Experimental data were acquired to vali-
date the model assumptions. Based on our results, we
will also discuss the application potential of SSFP
methods.

2. Theory

2.1. Tensor operator formalism

Throughout this work, the density operator r is
expressed in terms of the symmetric ðT̂ lmðsÞÞ and antisym-
metric ðT̂ lmðaÞÞ combinations of the unit tensor operators
[16]. In this representation r becomes

r ¼
X3

l¼1

Xl

m¼�l

½tlmðsÞT̂ lmðsÞ þ tlmðaÞT̂ lmðaÞ�. ð1Þ

The coefficients tlm (a) and tlm (s) are purely real- and imag-
inary-valued; therefore, magnitude and phase of a pair of
coherences T̂ lmðaÞ and T̂ lmðsÞ can be calculated from the
complex number T̂ lmðs; aÞ ¼ T̂ lmðaÞ þ T̂ lmðsÞ. The physical
meaning of the tensor operators is: average population
ðT̂ 00Þ, longitudinal magnetization and Zeeman interaction
ðT̂ 10Þ, transverse magnetization and interaction with the
RF field ðT̂ 11ðs; aÞÞ, quadrupolar polarization and static
quadrupolar coupling ðT̂ 20Þ, rank-two single quantum
coherence ðT̂ 21ðs; aÞÞ, rank-two double quantum coherence
ðT̂ 22ðs; aÞÞ, octopolar polarization ðT̂ 30Þ, rank-three single
quantum coherence ðT̂ 31ðs; aÞÞ, rank-three double quantum
coherence ðT̂ 32ðs; aÞÞ, and rank-three triple quantum coher-
ence ðT̂ 33ðs; aÞÞ. In this representation, T̂ 11ðaÞ and T̂ 11ðsÞ are
the only observable quantities; they correspond to x- and
negative y-magnetization, respectively. T̂ 21ðs; aÞ and
T̂ 31ðs; aÞ are not directly observable but partly evolve into
observable T̂ 11ðs; aÞ through quadrupolar relaxation.

The spin Hamiltonian consists of a Zeeman term (HX), a
term expressing the interaction with the radio frequency
magnetic field (HP), and a term which takes quadrupolar
interaction into account (HQ):

H ¼ HX þ H P þ HQ. ð2Þ

In the Larmor frequency (x0) rotating frame, the Zeeman
term and the term for an RF pulse applied along the y-axis
are [16]
HX ¼ ðcB� x0Þ
ffiffiffi
5
p

T̂ 10 ¼ x
ffiffiffi
5
p

T̂ 10; ð3Þ

HP ¼ x1

ffiffiffi
5
p

T̂ 11ðsÞ. ð4Þ

B is the magnetic field at the location of the nucleus. The
quadrupolar interaction term consists of a static part

HQS ¼ xQT̂ 20; ð5Þ
which causes a shift of the energy levels [17], and a fluctu-
ating part, which gives rise to relaxation [17,18]. The latter
part is not explicitly stated here since it involves a more
complex treatment [18]. The formalism for calculating the
evolution of r in the presence of the above-mentioned
interactions has been derived before [16–19,22] and will
not be described here in detail.

For practical reasons, all coherences are summarized in
a 15-element vector:

r ¼fT̂ 10; T̂ 11ðsÞ; T̂ 11ðaÞ; T̂ 20; T̂ 21ðsÞ; T̂ 21ðaÞ;
T̂ 22ðsÞ; T̂ 22ðaÞ; T̂ 30; T̂ 31ðsÞ;
T̂ 31ðaÞ; T̂ 32ðsÞ; T̂ 32ðaÞ; T̂ 33ðsÞ; T̂ 33ðaÞgT. ð6Þ

Due to the linear nature of the tensor operator formalism,
an evolution of the density operator can be expressed in
terms of matrix operations (matrices M are noted here in
boldface). Thus, Larmor precession (or chemical shift) by
an angle u is expressed as

r! XðuÞr. ð7Þ
An RF pulse with flip angle a irradiated along the y-axis is
written as

r! PðaÞr; ð8Þ
while an RF pulse applied along an arbitrary axis in the xy-
plane, forming an angle u with the y-axis, takes the form

r! XðuÞPðaÞXð�uÞr ð9Þ
It has been assumed here that the RF pulse is sufficiently
short and strong, such that off-resonance effects and effects
due to relaxation can be neglected. Finally, quadrupolar
relaxation is expressed as

r! RðxQ; tÞ½r� r0� þ r0. ð10Þ
Here X, P, and R are 15 · 15 matrices; their explicit form is
given in Appendix A. r0 ¼ f

ffiffiffi
5
p

; . . . ; 0gT is the equilibrium
magnetization.

2.2. Density operator in a balanced SSFP sequence

An SSFP sequence (Fig. 1) consists of an arbitrarily long
train of short, phase coherent RF pulses (flip angle a, phase
u) separated by an interpulse delay TR, during which Lar-
mor precession and quadrupolar relaxation determine the
evolution of the spin system. u may progress linearly with
the number n of RF pulses, un = n Æ Du. The effects of Lar-
mor precession between two consecutive RF pulses and the
phase increment Du can be summarized in a single
parameter,



Fig. 1. Schematic representation of an SSFP sequence.
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b ¼ Du� xTR; ð11Þ
which describes the net precession with respect to the RF
pulse phase. The minus sign expresses the fact that spins
which precess with the same phase increment per TR as
the RF pulse phase are equivalent to on-resonant spins in
a sequence with a zero RF pulse phase increment. In par-
ticular, the difference between a sequence with a constant
(u = 0,0, . . .) and an alternating RF pulse phase
(u = 0,p, . . .) just corresponds to a shift of b by p. Now
let rn represent the density operator immediately after
application of the nth RF pulse. The operation transferring
the spin system from rn to rn+1 involves quadrupolar relax-
ation, chemical shift, and RF irradiation. Hence rn+1 is giv-
en by

rnþ1 ¼ PðaÞXðbÞ½RðxQ; TRÞ½rn � r0� þ r0�. ð12Þ
For the system to be in the steady state, the condition must
be met that the density operator be periodic with the exci-
tation pattern, which means rn+1 = rn: = rss, or

rss ¼ PðaÞXðbÞ½RðxQ; TRÞ½rss � r0� þ r0�. ð13Þ
This system of linear equations, where rss is the unknown
quantity, are formally independent of the spin number I.
An analytical solution can be obtained for I = 1/2 [13].
That solution also applies to spin-3/2–nuclei in the extreme
narrowing-limit, i.e., if transverse relaxation is quasi-
monoexponential. In that case, only tensor operators of
rank 1 are different from zero, and the dynamics of 23Na
can be described by the Bloch equations. However, with
biexponential relaxation present, in an on-resonant system
nine coherences are excited, and in a system which is al-
lowed to precess (b „ 0), the full set of 15 coherences is
excited. An analytical solution has been obtained by solv-
ing Eq. (13). This involves straightforward linear algebra
and has been done in the Mathematica software (Wolfram
Research Inc.). Nevertheless, the resulting expressions are
sparse and not very instructive. We do not exclude that
there might be shorter expressions, but omitted this and
decided to take a numerical approach (see Section 3).

We should also note that the application of imaging gra-
dients switched between the RF pulses does not affect the
response of the coherences to a, b, and TR, provided that
the gradients are completely balanced,Z TR

t¼0

GðtÞ dt ¼ 0; ð14Þ
where G (t) is the gradient shape. The reason is that
with a completely rewinded gradient, the net phase that
is accumulated between two RF pulses is zero, regard-
less of the quantum number m. This, of course, is no
longer the case if the condition in Eq. (14) is not
fulfilled.

2.3. Measurement of the multiple quantum coherences

In this section we describe a method to measure the
coherences T̂ lmðs; aÞ after some preparation, separated
according to their quantum number m. The preparation
is arbitrary; in this concrete case, of course, it will be an
SSFP preparation. By calculation of the observable signal,
expressions which link the numerical simulations and
experimental results are provided.

Immediately after the preparation, a 90� pulse is
applied, the phase of which is stepped through the values
2p/12, 4p/12, . . ., 2p. The observable signal is calculated
with the tensor operator formalism; it can be written in
the form

Sðt;/Þ ¼ e�i/
X3

m¼�3

SmðtÞemi/ m ¼ �3; . . . ; 3. ð15Þ

The signal contribution Sm (t), which is obtained by Fouri-
er transformation of S (t, /) with respect to /, arises only
from |m|-quantum coherences,

SmðtÞ ¼ hðtÞ
X3

l¼jmj
almðtÞ½T̂ lmðaÞ þ signðmÞT̂ lmðsÞ� for ð16Þ

m�½�3; 3� n 0; and ð17Þ
S0ðtÞ ¼ hðtÞ½a10ðtÞT̂ 10 þ a20ðtÞT̂ 20 þ a30ðtÞT̂ 30�. ð18Þ
Here, h (t) represents the Heaviside function, taking into
account that signal acquisition starts at t = 0. The time
dependence due to relaxation is contained in the coeffi-
cients alm (t), which are of the form almðtÞ ¼ ~almq1

1lðtÞ. The
factors ãlm and the relaxation functions qm

l0l are provided
in Appendix A.

It can be found that al;�m ¼ �a�l;m. Using additionally
that the entries for T̂ lmðaÞ and T̂ lmðsÞ are purely real- and
imaginary-valued, respectively, it can be shown that

S�mðtÞ ¼ �ðSmðtÞÞ�. ð19Þ

In a real sample the quadrupolar frequency is distributed
according to a function q (xQ) which in a first approxima-
tion is assumed to be Gaussian with mean �xQ and variance
r [18,21],

qðxQÞ / expð�ðxQ � �xQÞ2=ð2r2ÞÞ. ð20Þ

This is accounted for by considering the NMR signal to be
the sum of the contributions originating from different val-
ues of xQ:

S ¼
Z

dxQSðxQÞqðxQÞ. ð21Þ



Table 1
Sample-dependent simulation parameters

Set T1f [ms] T1s [ms] T2f [ms] T2s [ms] r [rad/s] �xQ [rad/s]

A 36.9 37.0 9.9 37.0 58 132
B 10.0 52.0 2.0 17.0 0, 750 Variable

Sample-dependent simulation parameters. See text for further details.
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In the presence of B0-inhomogeneities, Sm (t) becomes

SmðtÞ ¼ hðtÞ
Z

dxQqðxQÞ
X3

l¼jmj
almðtÞ �

Z
dxeixtf ðxÞ

� ½T̂ ljmjðaÞ þ signðmÞT̂ ljmjðsÞ�; ð22Þ

where f (x) represents the distribution of the resonance fre-
quency. T̂ ljmjðaÞ and T̂ ljmjðsÞ, as well, depend on x. The
information contained in Sm (t) and S�m (t) can be com-
bined to eliminate h (t), using the relation in Eq. (19):

SmðtÞ � ðS�mð�tÞÞ� ¼
Z

dxQqðxQÞ
X3

l¼jmj
ðalmðtÞhðtÞ

þ almð�tÞhð�tÞÞ

�
Z

dxeixtf ðxÞ T̂ lmðaÞ þ T̂ lmðsÞ
� �

¼
Z

dxQqðxQÞ
X3

l¼jmj
almðjtjÞ

�
Z

dxeixtf ðxÞ T̂ lmðaÞ þ T̂ lmðsÞ
� �

.

ð23Þ
Performing the Fourier transformation of the left-hand
side in Eq. (23) with respect to t yields a sum of the integ-
rands f ðxÞðT̂ lmðaÞ þ T̂ lmðsÞÞ, convolved with the corre-
sponding transverse relaxation functions and implying
integration over xQ. Note that in the expression in Eq.
(23) m ranges only from 0 to 3. The spectral amplitude
can be used as a measure for the m-quantum coherences
and allows a comparison between simulations and
experiment.

3. Methods

3.1. Numerical simulations

The spin operator formalism was implemented as a set
of Mathematica (Wolfram Research Inc.) subroutines. r
was written as a 15-element vector, and Larmor precession,
RF pulses, and quadrupolar relaxation were implemented
as matrix operations acting on r (see Section 2). Starting
from equilibrium magnetization, the iteration was carried
out according to Eq. (12). The relative distance in coher-
ence space was measured with the formula

dn ¼
jrnþ1 � rnj
jrnj

. ð24Þ

Iterations were abandoned when dn was smaller than 10�4,
and rss was set to rn.

Two different sets of sample-dependent parameters, i.e.,
relaxation times and mean and variance of the quadrupolar
frequency distribution, were used in the simulations. For
convenience they are summarized in Table 1. Set A con-
tained the parameters which characterize the agar-phan-
tom used in this work (see Section 4). Since these values
were found to be atypical for in vivo samples, a second
set of parameters (set B) was used: T2f = 2 ms,
T2s = 17 ms, T1f = 10 ms, and T1s = 52 ms. The actual T2f

and T2s resemble those reported for intracellular sodium
in [23,24]. T1f and T1s have been estimated based on a
Lorentzian form of the spectral density function J (x).
Values of xQ are annotated with the results. A distribution
of the quadrupolar frequency was considered only in one
case (see Section 4).

To compare simulations and experiment, spectra corre-
sponding to the right-hand side in Eq. (23) were computed
in simulations with parameter set A. The Tlm values in the
steady state were multiplied in the frequency domain by
f (x) = exp(�x2/2Dx2). Dx was estimated from a global
spectrum and T2-data and was Dx/2p = 2.4 Hz. The spectral
domain was then inversely Fourier transformed, multiplied
by the corresponding coefficients alm (t), summed and Fouri-
er transformed. Signals were computed at 21 different values
of xQ, which were equidistantly distributed between �xQ � 3r
and �xQ þ 3r. These signals were correspondingly multiplied
by q (xQ) and summed. The spectral maximum was taken as
a measure for the intensity of the multiple quantum spectra.

Simulations with parameter set B yielded a set of
T̂ lmðs; aÞ in the steady state for various values of TR, a,
and b. The time domain signal was computed by multipli-
cation of T̂ 11ðs; aÞ, T̂ 21ðs; aÞ, and T̂ 31ðs; aÞ in the b-domain
with a Gaussian weighting function (Dx/2p = 15 Hz) and
subsequent inverse Fourier transformation. The corre-
sponding contributions were then multiplied by the relaxa-
tion functions q1

11ðtÞ, q1
12ðtÞ, and q1

13ðtÞ, respectively, and
added. Furthermore, as a measure for the overall signal,
all points in the time domain signal were summed; this is
equivalent to the spectral amplitude. To investigate the
dependence of this quantity on b, the T̂ 11ðs; aÞ, T̂ 21ðs; aÞ,
and T̂ 31ðs; aÞ coherences were shifted in the b-domain prior
to multiplication with f (x).

3.2. NMR experiments

NMR experiments were performed on an 11.75 T
Avance 500 spectrometer (Bruker Biospin, Ettlingen,
Germany). An approximately spherically-shaped phantom
with a diameter of ca. 0.7 mm was fabricated. It consisted
of water, 5 vol% agar-agar, and sodium chloride at a 1 M
concentration. The agar sphere was encased in a thin latex
foil, which was placed in the center of a 20 mL syringe
filled with distilled water. The water surrounding the sam-
ple served to reduce B0-inhomogeneities, while the latex-
foil prevented diffusion of sodium ions between the
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agar-sample and water. This setup was placed in the center
of a 20 mm inner diameter birdcage resonator. Due to the
small sample size, the B1 field was practically homogeneous
over the entire sample; the duration of a 90� pulse was
50 ls.

3.2.1. Determination of the sample properties

Longitudinal relaxation times T1f and T1s were deter-
mined with a triple quantum-filtered inversion-recovery
method [22]:

ðp; 0Þ � s� p
2
;/

� �
� p

2
; 0

� �
�ReadoutðtÞ. ð25Þ

For each preparation time s, the pulse phase / was stepped
through the values 30�, 90�, 150�, 210�, 270�, and 330�, while
the receiver phase was kept constant at 0�. s took 16 values
ranging from 2 to 300 ms. In the time domain, 512 complex
data points were read out with a bandwidth of 5 kHz; 16
averages were performed. The signal was Fourier trans-
formed with respect to t and /, resulting in a separation of
the components modulated by exp(mi/). The triple quan-
tum (TQ, m = ±3) spectral amplitude assumes the form

S�3ðsÞ / ðe�s=T 1f � e�s=T 1sÞðT 2f � T 2sÞ; ð26Þ
whereas the single quantum (SQ, m = ±1) spectral ampli-
tude can be written as

S�1ðsÞ / �8 1� 2

5
e�s=T 1f � 8

5
e�s=T 1s

� �
ð3T 2f þ 2T 2sÞ

þ 6
ffiffiffi
6
p

25
ðe�s=T 1f � e�s=T 1sÞðT 2f � T 2sÞ. ð27Þ

For the sample used here, T1f and T1s were very close to each
other, indicated by a low TQ signal. Both values were there-
fore obtained by nonlinear fit to the SQ signal, neglecting the
transient-shaped term (second summand in Eq. (27); see also
Section 5). Spectral densities at one and two times the Lar-
mor frequency were computed using the expressions

J 1 ¼ Jðx0Þ ¼
1

2T 1f
; ð28Þ

J 2 ¼ Jð2x0Þ ¼
1

2T 1s
. ð29Þ

The short transverse relaxation time T2f was measured with
a double quantum magic angle (DQ-MA) pulse sequence
[18]:

ðp=2;/Þ � s=2� ðp;/Þ � s=2� ðhm;/� p=2Þ � d� ðhm; 0Þ. ð30Þ

For each s, the pulse phase / was stepped through the values
0�, 90�, 180�, and 270�, while the receiver phase alternated
between 0� and 180�. The experiment was performed using
16 values of s in the range from 960 ls to 40 ms; the evolution
time d was kept very short (60 ls). In the time domain, 512
complex data points were read out with a 5 kHz bandwidth,
and 16 averages were performed. The four FIDs were added
to obtain the double quantum signal. Assuming a Gaussian
distribution of the quadrupolar frequency, the double quan-
tum signal takes the form [18]
SDQ / ½e�r2ðt�sÞ2=2 cosðxQðt � sÞÞ � e�r2ðtþsÞ2=2

� cosðxQðt þ sÞÞ� � e�t=T 2f e�t=T 2s . ð31Þ

This function was fit to the data in the t and s domain using
a two-dimensional, nonlinear fit (Levenberg–Marquard-al-
gorithm) to obtain T2f, xQ, and r. The spectral density at
frequency zero was computed with the formula

J 0 ¼ Jð0Þ ¼ 1

T 2f
� J 1 � J 2. ð32Þ
3.2.2. Measurement of the single, double, and triple quantum

coherences in the steady state

The pulse sequence used to measure the single, double,
and triple quantum coherences in the steady state consisted
of an SSFP preparation block (33 pulses, TR = 12 ms,
a = 45� and 72�, phase increment Du) followed by a
(90�, /) coherence transfer pulse and data acquisition
(512 complex data points, bandwidth 5 kHz). The experi-
ment was performed for 32 values of Du equidistantly dis-
tributed in the range [�p, p]. In another series of
measurements, the flip angle was varied in 19 steps between
9� and 171� for Du = p. In each experiment, the coherence
transfer pulse phase was stepped through the values /
= k Æ 2p/12, k = 0, . . . , 11. The whole preparation block
was 384 ms long, which is about ten times the T1 of the
sample. This ensured that the system had converged to
the steady state at the end of the preparation block. The
maximal RF duty cycle was 0.8%.

After phase correction, the data were Fourier trans-
formed in the / direction, and m-quantum spectra were
computed as described in the Section 2. The spectral max-
imum was taken for the comparison between simulations
and experiment.
4. Results

4.1. Sample properties

Measurement of the longitudinal relaxation times yielded
T1f = 36.9 ± 0.5 ms and T1s = 37.0 ± 0.5 ms. Spectral den-
sities J1 and J2 were computed to be 13.6 and 13.5 s�1, respec-
tively. Using Eq. (A.7) T2s was determined to be 37.0 ms.
Results of the DQ-MA method were T2f = 9.9 ± 0.3 ms,
�xQ ¼ 132� 3 rad=s and r = 58 ± 3 rad/s. The spectral den-
sity J0 was calculated to be 73.9 s�1.

4.2. Comparison between simulations and experiment

Simulated and experimentally measured spectral ampli-
tudes are plotted together in Fig. 2. SQ, DQ, and TQ sig-
nals have been normalized to the SQ signal acquired after
a single 90� excitation pulse. The qualitative shape of the
experimental data curves is reproduced in the simulations,
except for slight deviations of the DQ signal (B) around
b = p. Good quantitative agreement between simulations



Fig. 3. Effect of xQ on T̂ 11ðs; aÞ, T̂ 21ðs; aÞ (A), and T̂ 21ðs; aÞ (B). Graphs
are shown for TR = 4, 8, and 12 ms (annotated in the graphs). Further
sequence parameters were a= 30� and b = p. Sample parameters: set B.

Fig. 2. Comparison between simulated and experimental data (lines and symbols, respectively). Shown are the single (SQ), double (DQ), and triple
quantum (TQ) signals as a function of b (A–C) and a (D). (A–C) Experimental data at 45� and 72� are denoted by d and j, respectively. (D) The SQ, DQ,
and TQ signals are denoted by d, �, and j, respectively. In (D) the DQ and TQ signals have been multiplied by 3 to fit to the scale of the SQ signal. The
TR was 12 ms. Sample and simulation parameters are given in Section 4.
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and experiment has been achieved for the SQ signal at
b = p (A and D).

4.3. Study of the dynamics with parameter set B

The steady-state values of the T̂ lmðs; aÞ coherences show
a behavior which is periodic in xQ. This is illustrated in
Fig. 3 for the single quantum coherences (T̂ 11ðs; aÞ,
T̂ 21ðs; aÞ, and T̂ 31ðs; aÞ) and is a simple consequence of the
fact that the relaxation functions qm

l0l themselves are period-
ic with xQ. The amplitude of the oscillations increases with
decreasing TR. While T̂ 21ðs; aÞ is dominated by these oscil-
lations—depending on xQ, T̂ 21ðs; aÞ can be zero or maxi-
mally excited—the influence of xQ on T̂ 11ðs; aÞ and
T̂ 31ðs; aÞ is less pronounced.

In Fig. 4 the single quantum coherences are plotted as a
function of the flip angle for an alternating RF pulse phase
(b = p). The influence of xQ can be best observed at short
TR and is therefore only shown at TR = 4 ms. Remark-
ably, there are flip angles at which T̂ 11ðs; aÞ, T̂ 21ðs; aÞ or
T̂ 31ðs; aÞ are zero.

We focus now on the flip angle around which T̂ 31ðs; aÞ is
nearly maximally excited, a = 72�. Magnitude and phase of
the single quantum coherences are shown as a function of b
in Fig. 5. At TR = 12 ms, the shape of the T̂ 11ðs; aÞ magni-
tude profile resembles that of spin-1/2 nuclei, but at shorter
TR an additional mode at b = p becomes visible. With
decreasing TR, the T̂ 11ðs; aÞ phase profile becomes less flat,
and the average slope around b = p becomes steeper.
T̂ 21ðs; aÞ is about one order of magnitude lower than
T̂ 31ðs; aÞ. The T̂ 31ðs; aÞ magnitude profile is composed of
three modes which become more distinct at shorter TR.



Fig. 4. Simulated dependence of T̂ 11ðs; aÞ, T̂ 21ðs; aÞ, and T̂ 31ðs; aÞ on the
flip angle, for various TR (4, 8, and 12 ms) and b = p. For the graphs
showing T̂ 11ðs; aÞ and T̂ 31ðs; aÞ, xQ has been set to zero (dashed lines) and
p/TR (solid lines). For the T̂ 21ðs; aÞ curves, xQ has been set to p/(2 TR).
Sample parameters: set B.
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The T̂ 31ðs; aÞ phase spans a range from 0 to 2p, for other
flip angles also from �2p to 0 (not shown). At TR = 4 ms,
changes in xQ have an effect on the magnitude and phase
profiles of the single quantum coherences, while at
TR = 8 and 12 ms the curves for different xQ are practical-
ly identical.

The course of the single quantum coherences in the b-
domain results in an observable time domain signal which
is shown in Fig. 6. It has been plotted for the shortest
(A,C) and longest TR (B,D) and for two values of xQ

for which T̂ 21ðs; aÞ is minimally and maximally excited,
respectively. Signal decay caused purely by off-resonances
has been denoted by a prime. The total signal is dominated
by the contribution of T̂ 11ðs; aÞ; the ratio of the contribu-
tions T̂ 31ðs; aÞ versus T̂ 11ðs; aÞ, however, is larger at the
shorter TR. The T̂

0
11ðs; aÞ signal has a maximum at

t � 2 ms, both for TR = 4 and 12 ms. At both values of
Fig. 5. Simulated T̂ 11ðs; aÞ (left column), T̂ 21ðs; aÞ (middle column), and T̂ 31ðs;
(annotated with the graphs). The graphs showing T̂ 11ðs; aÞ and T̂ 31ðs; aÞ have b
T̂ 21ðs; aÞ curves shown here have been obtained for xQ = p/(2 TR). Sample pa
TR the T̂
0
31ðs; aÞ signal is maximal at t = 0, indicating defo-

cusing behavior. The signal contribution originating from
T̂ 21ðs; aÞ is practically zero. Differences in the time domain
signal between (A,B) and (C,D) are mainly due to the dif-
ferent shape of the relaxation functions q1

11ðxQ; tÞ and
q1

13ðxQ; tÞ.
The dependence of T̂ 11ðs; aÞ, T̂ 21ðs; aÞ, and T̂ 31ðs; aÞ on

TR is shown in Fig. 7. With increasing TR, T̂ 11ðs; aÞ
decreases, while T̂ 21ðs; aÞ and T̂ 31ðs; aÞ increase.

One consequence of the excitation of multiple quantum
coherences in the steady state is that the amplitude ratio of
the fast versus the slowly decaying components deviates
from the usual value 3:2. The observable signal is given
by the single quantum coherences immediately after the
RF pulse:

SðtÞ ¼
X3

l¼1

q1
1lðtÞ½T̂ lmðaÞ þ T̂ lmðsÞ�. ð33Þ

Arranging the terms in Eq. (33) which contain the fast and
slow relaxation rates, it can be recognized that these de-
pend differently on the single quantum coherences:

FC1;3ðtÞ¼
3

10
1� J 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

J 2
2�x2

Q

q
0
B@

1
CAT̂ 11ðs;aÞ

2
64

� i

2

ffiffiffi
3

5

r
xQffiffiffiffiffiffiffiffiffiffiffiffi
J�2 x2

Q

q T̂ 21ðs;aÞ

þ
ffiffiffi
6
p

10
1� J 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

J 2
2�x2

Q

q
0
B@

1
CAT̂ 31ðs;aÞ

3
75expð�R1

1;3tÞ;

ð34Þ
aÞ (right column) as a function of b, at a = 72� and TR = 4, 8, and 12 ms
een obtained with xQ = 0 (dashed lines) and xQ = p/TR (solid lines). The
rameters: set B.



Fig. 6. Simulated time domain signal (solid lines) and its contributions from T̂ 11ðs; aÞ, T̂ 21ðs; aÞ, and T̂ 31ðs; aÞ (dashed lines). Signal decay caused by
off-resonances has been denoted by T̂

0
11ðs; aÞ, etc., xQ is 0 (A,B) and 393 s�1 (C,D), such that T̂ 21ðs; aÞ is maximally excited. Sample parameters: set B.

Fig. 7. T̂ 11ðs; aÞ, T̂ 21ðs; aÞ, and T̂ 31ðs; aÞ as a function of TR, for b = p and
a = 72�. For the graphs showing T̂ 11ðs; aÞ and T̂ 31ðs; aÞ xQ has been set to
zero (dashed lines) and p/TR (solid lines). The curve showing T̂ 21ðs; aÞ was
obtained with xQ = p/(2 TR); it has been multiplied by a factor 10.
Sample parameters: set B.

Fig. 8. Magnitude (A) and phase (B) of the fast (FC) and slowly decaying
signal components (SC) computed according to Eqs. (34) and (35).
Sequence parameters are a = 72� and TR = 4 ms. Curves are shown for
xQ = 0 (dashed lines) and xQ = p/TR (solid lines). Sample parameters:
set B.
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SCðtÞ ¼ 2

5
T̂ 11ðs; aÞ �

ffiffiffi
6
p

5
T̂ 31ðs; aÞ

" #
expð�t=T 2sÞ. ð35Þ

If J2 is small compared to J0, the real parts of R1
1 and R1

3 are
not very different, and from a practical point of view it
makes sense to summarize the two fast decaying compo-
nents FC1 (t) and FC3 (t) in a single fast decaying compo-
nent, FC (t) = FC1 (t) + FC3 (t). Since T̂ 11ðs; aÞ, T̂ 21ðs; aÞ,
and T̂ 31ðs; aÞ depend differently on the sequence parameters
(a, b, and TR), the fast and slowly decaying components do
so as well. The dependence on b is illustrated in Fig. 8. At
b = p the slowly decaying component contributes more to
the overall signal, while around b = 0 the fast decaying
component is dominant. Note that not only the amplitude,
but also the phase (Fig. 8B) of the fast and slowly decaying
components behave differently. The relative signal ampli-
tude of the slowly decaying component, g = SC(0)/
[SC(0) + FC(0)], is plotted in Fig. 9. In this graph the influ-
ence of off-resonance effects has already been included by
integration over b using the same Gaussian distribution
as for calculating the time domain signals. For a sequence
with alternating RF pulse phase (b = p) g is approximately



Fig. 9. Contribution of the slowly decaying component to the total signal
amplitude, g = SC(0)/(FC(0) + SC(0)). Effects due to a distribution of the
resonance frequency have been included by a Gaussian weighting in the
frequency domain. The curves have been computed for xQ = 0 (dashed
lines) and xQ = p/TR (solid lines). Sample parameters: set B.
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40% at long TR, but significantly larger at short TR. This
effect occurs for any xQ, but is maximal for xQ = p/TR.

The area under the curve (AUC) of the time domain sig-
nal is shown in Fig. 10. Values have been divided by TR to
Fig. 10. Total accumulated signal per unit time for various TR = 4, 8, and
12 ms (annotated). In (A) and (B) a = 72�, and in (C) b = p. Off-resonance
effects have been included by a Gaussian weighting in the frequency
domain. Furthermore, integration over xQ has been performed using a
Gaussian distribution of xQ with mean �xQ ¼ 0 and variance r = 750 rad/
s. Sample parameters: set B.
allow a comparison between different TR values. The
graphs have been obtained by integration over xQ using
a Gaussian distribution of the quadrupolar frequency with
mean �xQ ¼ 0 and variance r = 750 rad/s. The latter value
for r has been taken from previously reported measure-
ments in cartilage [18]. Other values of r were tested as
well, but the corresponding curves do not look qualitative-
ly different (not shown). The distribution of the resonance
frequency causes blurring of the magnitude and phase pro-
files. Since the width of the distribution scales inversely
with TR, this effect is less pronounced at short TR.
Remarkably, at some flip angle (here ca. 135�) the AUC
is zero.

5. Discussion

5.1. Comparison between simulations and experiment

The behavior of 23Na during SSFP has been investigated
in numerical simulations and experiments. Both show that
during SSFP multiple quantum coherences are excited. All
curves, except for the DQ graphs in Fig. 2B, show good
qualitative agreement between simulations and experiment;
the latter show at least partial qualitative agreement. For
the SQ signal even good quantitative agreement is observed
(b = p, Figs. 2A and D). Note that the model curves have
not been obtained by some fit procedure, but by measure-
ment of the sample characteristics under certain model
assumptions and subsequent simulation.

The deviations between the simulated and experimental
data are not limited to a single source. Above all, the sam-
ple is certainly composed of a multitude of domains which
are characterized by different sets of model parameters. For
instance, a nonlinear fit to the triple quantum signal (Eq.
(26)) yielded different values of T1f and T1s than those
obtained from the single quantum signal (Eq. (27)), with
an amplitude corresponding to 2% of the sample. This
compartment was neglected in the simulations due to its
small partition, but also because its transverse relaxation
times could not be determined. Furthermore, it is clear that
the approximation of the distributions of x and xQ by a
Gaussian is only a rough simplification. Nevertheless, using
these simplifications, it is possible to come close to the
experimental data, and large computational and experi-
mental effort is avoided.

Eq. (31) is only valid if no essential contributions arise
from the range �J2 6 xQ 6 J2, thus if hidden quadrupolar
splitting does not play a significant role. In the agar sample
used here, this condition is fulfilled to a good approxima-
tion: only 1.4% of the total area under curve of q (xQ)
are between �J2 and J2.

5.2. Simulations with parameter set B

Quadrupolar relaxation effects during periodic RF irra-
diation have been described before in the context of multi-
ple-pulse quadrupolar echoes [14]. The latter method can
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be considered as the special case b = 0 of an SSFP
sequence. While in that work, the dynamics were consid-
ered for a � 90� and at a short TR (	 T2f), with the
emphasis on relaxation during irradiation, in this work
the regime of long TR has been studied. Furthermore, in
the present work the investigation could be extended to
general a and b.

The simulations have shown that in some regimes of
parameter space the observable signal can be approxi-
mately described by the Bloch equations. For instance,
the trend has been observed that at low flip angles and
long TR the curves (magnitude and phase profile in the
b-domain, flip angle dependency) are similar to those
observed with spin-1/2 nuclei. In this comparison, we
exclude biexponential relaxation, which is an effect that
can not be explained by the Bloch equations, but in the
case of similar T1f and T1s could be artificially introduced
by considering two pools that exhibit different relaxation
times.

There are other regimes of parameter space—here at
short TR and large flip angles—where the excitation of
multiple quantum coherences leads to effects which would
not occur with dynamics based on the Bloch equations.
One example is the occurrence of more than two modes
in the magnitude and phase profile (Figs. 5 and 10). Anoth-
er example is that the total time domain signal is zero at
some flip angle between 0� and 180� (here ca. 135�,
Fig. 10C). This effect is due to a cancellation of the contri-
butions from T̂ 11ðs; aÞ and T̂ 31ðs; aÞ. Third, a non-zero
mean of the quadrupolar frequency distribution would
cause the time domain signal to look similar to those
shown in Figs. 6C and D.

At flip angles below ca. 110� and for b = p, T̂ 31ðs; aÞ
becomes larger with shorter TR (Figs. 4 and 7). As a con-
sequence, the relative contribution of the slowly decaying
component increases. This effect contributes to the increase
of the total accumulated signal per unit time at short TR
(Fig. 10), although the latter effect is mainly due to the
shorter decay period. A deviation of the 3:2 amplitude ratio
of the fast and slowly decaying components, g, has been
reported in the context of spin-lock NMR [20,14].
Although the mechanism is different—in spin-lock NMR
T1q relaxation plays the dominant role—the similar result
was found that the fast decaying component is favored
for a constant RF pulse phase (b = 0, Fig. 9). Furthermore,
we have shown that this effect is reversed for an alternating
pulse phase (b = p), and that g is in general a function of a,
b, and TR. The practical importance of this effect is, of
course, that the problem of sodium visibility can be
reduced using SSFP.

The refocusing properties of SSFP methods can be
understood by considering the response of the signal phase
to b. This is somewhat more complicated for 23Na because
T̂ 11ðs; aÞ and T̂ 31ðs; aÞ have different phase profiles and
therefore different refocusing properties. It has been
observed in the simulations that at a TR that is short com-
pared to the transverse relaxation times, the T̂ 11ðs; aÞ phase
profile has an approximate slope of �1/2 around b = p,
leading to an echo at TR/2 (TR = 4 ms), in spite of a defo-
cusing T̂ 31ðs; aÞ phase profile. At larger values of TR, the
echo occurs significantly earlier than at TR/2, because
TR is much larger than T2f and on the order of T2s. The
shape of the time domain signal (Fig. 6) shows, however,
that these considerations do not play an important role
with 23Na. Transverse signal decay is dominated by—com-
pared to TR—the short T2f and T2s, and the occurrence of
an echo-like signal maximum in the signal evolution due to
off-resonances can be practically neglected. Therefore, the
shortest possible echo times are preferable to obtain opti-
mal SNR.

With sample parameters B and the sequence parameters
used here, coherences of rank 2 were excited only to a low
extent. Furthermore, variation of xQ had only little effect
on T̂ 11ðs; aÞ and T̂ 31ðs; aÞ, and practically no effect at
TR = 8 and 12 ms. Both observations can be attributed
to the fact that TR was longer than T2f. While the temporal
dynamics of T̂ 11ðs; aÞ and T̂ 31ðs; aÞ are determined by a
short and a long time constant, T̂ 21ðs; aÞ decays with a sin-
gle short time constant. SSFP, however, only emphasizes
those signal contributions which have a relaxation time
that is about equal to or longer than TR. Similarly, those
parts of T̂ 11ðs; aÞ and T̂ 31ðs; aÞ (and all other coherences)
which are sensitive to xQ are modulated by fast relaxation
as well, and therefore do not contribute to the SSFP-
dynamics.

With shorter TR, the RF duty cycle becomes larger, and
relaxation during the RF pulse can no longer be neglected.
In our hardware setup it was not necessary to take this
effect into account because the RF duty cycle was low
(0.4% for a 90� pulse), as was the absolute duration of
the RF pulses compared to the transverse relaxation times.
This situation is different for clinical scanners, with typical
RF pulse lengths of 500 ls or 1 ms. A formalism to
compute relaxation during the RF pulse is available [18]
and could have been included in the calculations. For
practical reasons, however, the regime of short TR was
not explored in the present work. In this regime, several
difficulties occur which make the application of SSFP
rather impractical, such as spin heating, high requirements
to the imaging gradient system, and SNR loss due to a low
ADC duty cycle.

5.3. Outlook: application potential

It has been shown by Kim and Parrish that SSFP meth-
ods can be used to acquire in vivo 23Na-images [5,15]. In
[5], a sequence optimization was performed with an exper-
imental approach, while in [15] considerations to optimize
the image SNR were based on the Bloch equations. We
have shown in the present study that for an understanding
of the dynamics, the spin-3/2 properties of 23Na must be
considered. These play a practical role for the implementa-
tion and optimization of 23Na imaging, which suffers from
inherently low sensitivity.
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Beyond sequence optimization, the results presented here
suggest that SSFP could have the potential to
differentiate between pools containing Na+-ions with differ-
ent mobility or different quadrupolar coupling. This is hith-
erto only performed by multiple quantum filtration
techniques [9,11,22,23]. The latter techniques have the draw-
back that a long TR is needed, resulting in a rather low SNR
per unit time compared to usual (single quantum) imaging
methods. During SSFP, multiple quantum coherences are
excited and have an effect on the observable signal. Thus,
SSFP methods are sensitive to the spin-3/2 properties of
23Na. However, separation of the signal contributions orig-
inating from single and multiple quantum coherences is only
possible by leaving the steady state, which is not desirable. It
remains, therefore, unresolved whether an improvement
compared to multiple quantum filters can be achieved using
SSFP methods. Nevertheless, it could be instructive to study
the signal response with respect to a change of the sequence
parameters in a multi-compartment system. This will be sub-
ject of future work.

Appendix A. Matrices P, R, and X

A.1. RF pulses

RF pulses act in subspaces of r characterized by the
same rank l; P has therefore block-diagonal shape:

P ¼
Pl¼1

Pl¼2

Pl¼3

0
B@

1
CA. ðA:1Þ

Closed expressions for the matrix elements Pij have been
taken from [16]; the sub-matrices are
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0 1 0
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Pl¼2 ¼

1
4
ð1þ 3 cosð2aÞÞ 0

ffiffi
3
p

2
sinð2aÞ

ffiffi
3
p

4
ð1� cosð2aÞÞ 0

0 cosðaÞ 0 0 sinðaÞ
�
ffiffi
3
p

2
sinð2aÞ 0 cosð2aÞ 1

2
sinð2aÞ 0ffiffi

3
p

4
ð1� cosð2aÞÞ 0 � 1

2
sinð2aÞ 1

4
ðcosð2aÞ þ 3Þ 0

0 � sinðaÞ 0 0 cosðaÞ

0
BBBBBBB@

1
CCCCCCCA
;

ðA:3Þ
and

Pl¼3 ¼

P 99 0 P 9b P 9c 0 0 P 9f

0 P aa 0 0 P ad P ae 0

P b9 0 P bb P bc 0 0 P bf

P c9 0 P cb P cc 0 0 P cf

0 P da 0 0 P dd P de 0

0 P ea 0 0 P ed P ee 0

P f 9 0 P fb P fc 0 0 P ff
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The entries Pij of Pl=3 are:
P 99 ¼ 1
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A.2. Quadrupolar relaxation

Analogous to RF pulses, quadrupolar relaxation acts in
subspaces of r given by the same quantum number m.
Accordingly, the relaxation matrix R reads
R ¼

q0
11 0 0 0 0 0 0 0 q0

13 0 0 0 0 0 0

0 q1
11 0 0 0 q1

12 0 0 0 q1
13 0 0 0 0 0

0 0 q1
11 0 q1
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Explicit expressions for the relaxation functions qm
l0l in a

zero-average electric field gradient have been provided in
[22]; this has been extended to the case of non-zero average
electric field gradients in [17,19]. The non-zero relaxation
functions are



Table B.1
Coefficients ãlm as used in Section 2

m l
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Coefficients ãlm as introduced in Section 2 and in Eq. (B.3).
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whereas the relaxation rates and relaxation times are given
by [19]
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2 � x2
QÞ

1=2

R2
1 ¼J 0 þ J 1 þ J 2 þ ðJ 2

1 � x2
QÞ

1=2

R2
1 ¼J 0 þ J 1 þ J 2 � ðJ 2

1 � x2
QÞ

1=2

T 1f ¼1=ð2J 1Þ;
T 1s ¼1=ð2J 2Þ;
T 2f ¼1=ReðR1

1Þ;
T 2s ¼1=ðJ 1 þ J 2Þ. ðA:7Þ

Here J0, J1, and J2 are the real part of the spectral density
function at zero frequency, the Larmor frequency and two
times the Larmor frequency, respectively.

A.3. Larmor precession

Larmor precession by an angle u is implemented as a
change of base by an angle �u [18]

T̂ lmðsÞ ! cosð�muÞT̂ lmðsÞ þ sinð�muÞT̂ lmðaÞ
T̂ lmðaÞ ! cosð�muÞT̂ lmðaÞ þ sinð�muÞT̂ lmðsÞ. ðA:8Þ
Appendix B. Coefficients ãlm

After a preparation in the steady state, it must be
assumed that all coherences are non-zero. r is therefore
written in its general form (Eq. (6)), and the observable sig-
nal after the coherence transfer pulse is computed using the
expressions
rss ! RðxQ; tÞ 
 ½Pðp=2;/Þ 
 rss � r0� þ r0; ðB:1Þ

Sðt;/Þ / ½T̂ 11ðaÞ þ T̂ 11ðsÞ�ðt;/Þ. ðB:2Þ
Arranging the terms according to exp (im/) it can be seen
that S (t, /) has the structure as shown in Eqs. (15)–(18).
Straightforward calculation shows that

al;�mðtÞ ¼ ~almq1
1lðtÞ ¼ ð�al;mðtÞÞ�; ðB:3Þ

~al;�m ¼ �~al;m. ðB:4Þ
The coefficients ãl,m are summarized in Table B.1.
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